Optics for Energy
Week 7. Thursday

Symmetry (contd.) & etedue in phase space
Circular symmetry

$h = \text{skew invariant or skewness is conserved in a system with circular symmetry}$.

Plane ν is parallel to $\hat{\mathbf{e}}_2 \hat{\mathbf{e}}_3 \quad \Rightarrow \quad \phi$ is a constant.

So the component of momentum along $\hat{\mathbf{e}}_2$ doesn't change upon refraction.

$$\Rightarrow \quad p_\phi = n_1 c_1 \sin \beta_1 = n_2 c_2 \sin \beta_2$$

But p_ϕ is not constant upon propagation. h is!

Projecting the ray onto plane ν, we get

$$\sqrt{n_1^2 - p_\phi^2} \sin \beta_1 = \sqrt{n_2^2 - p_\phi^2} \sin \beta_2$$

$$h = n_1 c_1 \phi$$

$$n_1 c_1 \phi = p_\phi$$

$$\Rightarrow \quad p_\phi = h / \phi$$

$$\Rightarrow \quad \sqrt{n_1^2 - (h / \phi)^2} \sin \beta_1 = \sqrt{n_2^2 - (h / \phi)^2} \sin \beta_2$$
\[\rho = | \overrightarrow{r} | \sin \beta = | \hat{e}_3 \times \overrightarrow{r} | \]

\[\overrightarrow{r} = \overrightarrow{0} \]

Then, \[h = | \hat{e}_3 \times \overrightarrow{r} | \frac{| \overrightarrow{p} |}{m} \cos \phi \]

\[= \rho \cdot (\hat{e}_3 \times \overrightarrow{r}) \]

since \(\hat{e}_3 \times \overrightarrow{r} \) is \(\parallel \) to \(\hat{e}_0 \) (since \(h = \rho / m \cos \phi \))
\[\vec{p}_p = \text{projection of } \vec{p} \text{ onto } x_1 x_2 \text{ plane (II to } \hat{e}_0 \cdot \hat{e}_p \text{ plane).} \]

\[|\vec{p}_p| = n \sin \gamma \]

\[\vec{r}_p = \text{projection of } \vec{r} \text{ onto } x_1 x_2 \text{ plane} \]

\[|\vec{r}_p| = \rho \]

Then \[h = n \rho \cos \phi = |\vec{p}_p| |\vec{r}_p| \sin \alpha \quad (\phi + \alpha = \pi/2) \]

\[= |\vec{r}_p \times \vec{p}_p| \]
plane ν is parallel to $\hat{e}_z \hat{e}_r$ $\rightarrow \Theta$ is a constant.

So the component of momentum along \hat{e}_z doesn't change upon refraction.

$$n_2 \cos \theta \alpha_{n_2} = n_2 \cos \alpha_{n_2}$$

But P_Θ is not constant upon propagation. h is!

Projecting the ray onto plane ν, we get

$$\frac{\sqrt{n_1^2 - P_\Theta^2}}{\sin \beta_1} = \frac{\sqrt{n_2^2 - P_\Theta^2}}{\sin \beta_2}$$

$$h = n_2 \cos \theta$$

$$n_2 \alpha_\phi = P_\Theta$$

$$\Rightarrow \quad P_\Theta = \frac{h}{n_2}$$

$$\Rightarrow \quad \frac{\sqrt{n_1^2 - (\frac{h}{n_2})^2}}{\sin \beta_1} = \frac{\sqrt{n_2^2 - (\frac{h}{n_2})^2}}{\sin \beta_2}$$
Étendue in phase space

Conservation of étendue

\[dx_1 dx_2 dx_3 dx_4 dp_1 dp_2 \]

The quantity, \(dx_1 dx_2 dx_3 dx_4 dp_1 dp_2 \), is conserved as light travels through an optical system.

Example of free-space propagation

The quantity, \(dV \), \(dx_1 dx_2 dp_1 dp_2 \), is conserved as light travels through an optical system.

Example of refraction

The quantity, \(dV \), \(dx_1 dx_2 dp_1 dp_2 \), is conserved as light travels through an optical system.

Definition

The étendue of this bundle of rays crossing \(dS \) is defined as:

- \(d^2G := n dS \cos \theta \, d\theta \) in 2D space
- \(d^2G := n^2 dS \cos \theta \, d\theta d\Omega \) in 3D space
Conservation of etendue

\[dx_1 dx_2 \, dp_1 dp_2 = dx_1^* dx_2^* dp_1^* dp_2^* \]

The quantity, \(dU = dx_1 dx_2 dp_1 dp_2 \) is conserved as light travels through an optical system.
The quantity, $dU = d\Omega_1 d\Omega_2 dp_1 dp_2$, is conserved as light travels through an optical system.
The quantity, $dU = dx_1 dx_2 dp_1 dp_2$ is conserved as light travels through an optical system.
Another way to look at etendue is

\((x_1, x_2, p_1, p_2)\) defines a point in phase space.

This is a point and a direction \(\Rightarrow\) Ray

A volume of points in phase space \(\Rightarrow\) Bundle of rays

The volume in phase space occupied by a bundle of rays is constant (or increasing) as it passes through an optical system.
The etendue of this bundle of rays crossing dS is defined as:

$$d^2G := ndS \cos \theta d\theta$$ in 2D space

$$d^2G := n^2 dS \cos \theta d\Omega$$ in 3D space
Solid Angle Review

The solid angle subtended by an arbitrary surface to a point is given by:

\[\Omega = \iiint_{S} \frac{\hat{r} \cdot \hat{n} \, dS}{r^3} = \iiint_{S} \sin \theta \, d\theta \, d\varphi. \]
Conservation of Etendue

Example of free-space propagation

Light source = \Sigma
Refractive index of medium = n
Receiver = S

The etendue of light crossing dΩ towards dS is:
\[d^2G_{\Sigma} = n^2 dΩ \cos \theta_\Sigma d\Omega_{\Sigma} = n^2 dΩ \cos \theta_\Sigma \frac{ds \cos \theta_S}{ds} \]
where dΩ_\Sigma is the solid angle subtended by the area dS at area dΩ.

The etendue for the whole system is:
\[G = \int_{S} \int_{\Sigma} d^2G \]

Etendue as a volume in phase space

Note a light ray is defined by:
1. Position. \((x, y, z)\)
2. Direction. \((\cos \alpha_X, \cos \alpha_Y, \cos \alpha_Z)\)
3. Refractive index, n.

The optical momentum at that point is defined as
\[p = n(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \]

Etendue as a volume in phase space

In spherical coordinates,
\[dp dq = \frac{\partial(p, q)}{\partial(\theta, \varphi)} d\theta d\varphi = \left(\frac{\partial p}{\partial \theta} \frac{\partial q}{\partial \varphi} - \frac{\partial p}{\partial \varphi} \frac{\partial q}{\partial \theta} \right) d\theta d\varphi \]
\[= n^2 \cos \theta \sin \theta d\theta d\varphi = n^2 \cos \theta d\Omega \]

Therefore, etendue for an area dS = dx dy on the xy plane in medium of index, n is
\[d^2G = n^2 dS \cos \theta d\Omega = dx \ dy \ dp \ dq \]
This is an infinitesimal volume in phase space \(x, y, p, q \).
Example of free-space propagation

Light source = Σ
Refractive index of medium = n

Receiver = S

The etendue of light crossing $d\Sigma$ towards dS is:

$$d^2 G_{\Sigma} = n^2 d\Sigma \cos \theta_{\Sigma} d\Omega_{\Sigma} = n^2 d\Sigma \cos \theta_{\Sigma} \frac{dS \cos \theta_S}{d^2}$$
where $d\Omega_{\Sigma}$ is the solid angle subtended by the area dS at area $d\Sigma$

The etendue of light crossing dS coming from $d\Sigma$

$$d^2 G_{S} = n^2 dS \cos \theta_{S} d\Omega_{S} = n^2 dS \cos \theta_{S} \frac{d\Sigma \cos \theta_{\Sigma}}{d^2}$$
where $d\Omega_{S}$ is the solid angle subtended by the area $d\Sigma$ at area dS.

$$d^2 G_{\Sigma} = d^2 G_{S}$$
The etendue is conserved!

The etendue for the whole system is:

$$G = \int_{\Sigma} \int_{S} d^2 G$$
Example of refraction

incident light

Snell's Law -> \(n_\Sigma \sin \theta_\Sigma = n_S \sin \theta_S \)

\(n_\Sigma \cos \theta_\Sigma d\theta_\Sigma = n_S \cos \theta_S d\theta_S \)

\(n_\Sigma^2 \cos \theta_\Sigma \left(\sin \theta_\Sigma d\theta_\Sigma d\varphi \right) = n_S^2 \cos \theta_S \left(\sin \theta_S d\theta_S d\varphi \right) \)

Note this term doesn't change upon refraction.

\(n_\Sigma^2 \cos \theta_\Sigma d\Omega_\Sigma = n_S^2 \cos \theta_S d\Omega_S \)

\(n_\Sigma^2 dS \cos \theta_\Sigma d\Omega_\Sigma = n_S^2 dS \cos \theta_S d\Omega_S \leftrightarrow d^2 G_\Sigma = d^2 G_S \)

Etendue is conserved upon refraction.

This is also easily proved for reflection in the same manner.
Etendue as a volume in phase space

Note a light ray is defined by:
1. Position. \((x, y, z)\)
2. Direction. \((\cos \alpha_x, \cos \alpha_y, \cos \alpha_z)\)
3. Refractive index, \(n\).

The optical momentum at that point is defined as

\[p = n(\cos \alpha_x, \cos \alpha_y, \cos \alpha_z) = (p, q, r) \]
Etendue as a volume in phase space

In spherical coordinates,

\[\mathbf{p} = n \left(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta \right) \]

\[dp \, dq = \frac{\partial (p, q)}{\partial (\theta, \varphi)} \, d\theta \, d\varphi = \left(\frac{\partial p}{\partial \theta} \frac{\partial q}{\partial \varphi} - \frac{\partial p}{\partial \varphi} \frac{\partial q}{\partial \theta} \right) \, d\theta \, d\varphi \]

\[= n^2 \cos \theta \sin \theta \, d\theta \, d\varphi = n^2 \cos \theta \, d\Omega \]

Therefore, etendue for an area \(dS = dx \, dy \) on the xy plane in medium of index, \(n \) is

\[d^2 G = n^2 \, dS \, \cos \theta \, d\Omega = dx \, dy \, dp \, dq \]

This is an infinitesimal volume in phase space \(x, y, p, q \).
Example Problem.
<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21</td>
<td>Week #1</td>
<td>Overview of course; Intro to project topics</td>
</tr>
<tr>
<td>8/23</td>
<td>Week #1</td>
<td>Introduction to project topics</td>
</tr>
<tr>
<td>8/28</td>
<td>Week #2</td>
<td>Solar Radiation: The basics</td>
</tr>
<tr>
<td>8/30</td>
<td>Week #2</td>
<td>Thermodynamics of solar heating & cooking</td>
</tr>
<tr>
<td>9/4</td>
<td>Week #3</td>
<td>Introduction to Geometrical Optics</td>
</tr>
<tr>
<td>9/6</td>
<td>Week #3</td>
<td>Optical design for recycling</td>
</tr>
<tr>
<td>9/11</td>
<td>Week #4</td>
<td>Lagrangian & Hamiltonian Optics</td>
</tr>
<tr>
<td>9/13</td>
<td>Week #4</td>
<td>Rays & Wavefronts [Literature reviews due]</td>
</tr>
<tr>
<td>9/18</td>
<td>Week #5</td>
<td>Light tools optical design software tutorial (Guest lecture: Dr. Mohit Diwekar)</td>
</tr>
<tr>
<td>9/20</td>
<td>Week #5</td>
<td>Technology Commercialization (Guest lecture: Frank Norris, TCO UofU)</td>
</tr>
<tr>
<td>9/25</td>
<td>Week #6</td>
<td>[No Class]</td>
</tr>
<tr>
<td>9/27</td>
<td>Week #6</td>
<td>Reflection & Refraction</td>
</tr>
<tr>
<td>10/2</td>
<td>Week #7</td>
<td>Symmetry</td>
</tr>
<tr>
<td>10/4</td>
<td>Week #7</td>
<td>Etendue in phase space [Your idea section due]</td>
</tr>
<tr>
<td>10/9, 10/11</td>
<td>Week #8</td>
<td>Fall Break</td>
</tr>
<tr>
<td>10/16</td>
<td>Week #9</td>
<td>Review of solar cells (Guest lecture, tentative)</td>
</tr>
<tr>
<td>10/18</td>
<td>Week #9</td>
<td>[No Class]</td>
</tr>
<tr>
<td>10/23</td>
<td>Week #10</td>
<td>Radiometry, Photometry, Radiation heat transfer</td>
</tr>
<tr>
<td>10/25</td>
<td>Week #10</td>
<td>Fundamental concepts of Non-imaging optics [Project plan section due]</td>
</tr>
<tr>
<td>10/30</td>
<td>Week #11</td>
<td>Fundamental concepts of Non-imaging optics</td>
</tr>
<tr>
<td>11/1</td>
<td>Week #11</td>
<td>Mid-term project presentations</td>
</tr>
<tr>
<td>11/6</td>
<td>Week #12</td>
<td>Statistical Ray Optics</td>
</tr>
<tr>
<td>11/8</td>
<td>Week #12</td>
<td>Light trapping</td>
</tr>
<tr>
<td>11/13</td>
<td>Week #13</td>
<td>Light trapping – Plasmonics & Dielectric scatterers (Guest lecture: Dr. James Nagel)</td>
</tr>
<tr>
<td>11/15</td>
<td>Week #13</td>
<td>Light trapping (guest lecture Dr. James Nagel).</td>
</tr>
<tr>
<td>11/20</td>
<td>Week #14</td>
<td>Design of 2D concentrators [Build-out / simulation section due]</td>
</tr>
<tr>
<td>11/22</td>
<td>Week #14</td>
<td>Thanksgiving break</td>
</tr>
<tr>
<td>11/27</td>
<td>Week #15</td>
<td>Spectrum splitting approaches</td>
</tr>
<tr>
<td>11/29</td>
<td>Week #15</td>
<td>Anti-reflection coatings [Business Plan / Commercialization section due]</td>
</tr>
<tr>
<td>12/4</td>
<td>Week #16</td>
<td>Concentrated Photovoltaics</td>
</tr>
<tr>
<td>12/6</td>
<td>Week #16</td>
<td>Solar Simulators [National Clean Energy Business Plan Application due]</td>
</tr>
</tbody>
</table>