Optics for Energy
Lecture 13
Anti-reflection coatings
What is anti-reflection?

Important to couple light into solar cells.
(1) refractive index
\[n_{\text{film}} = \sqrt{n_{\text{air}} \cdot n_{\text{glass}}} = 1.23 \]

(2) thickness of the coating = \(\lambda / 4 \)

Important to couple light into solar cells.
Quarter-wave coating

Interference

Rays A and B are out of phase by \(\pi \) or \(\lambda/2 \), & destructively interferes.

What is the thickness of an anti-reflective coating of silicon nitride to reduce reflection from a silicon surface at normal incidence? At 45 degrees.

- Silicon nitride
- Silicon
Interference
Rays A and B are out of phase by pi or lambda/2, & destructively interferes.
Depends upon angle of incidence

Relationship between angle of incidence and amount of reflected light
What is the thickness of an anti-reflective coating of silicon nitride to reduce reflections from a silicon surface at normal incidence? at 45 degrees incidence?

| silicon nitride | silicon |
Multiple layers such that index varies from 1 to n smoothly

Incoherent compared to quarter-wave (no interference effects)

Can you think of other ways to achieve this same effect? (Brainstorm)
2 layer ARC see http://pveducation.org/pvcdrom/design/dlarc
Black Silicon to Revolutionize Solar Industry

Ad muted. Undo

We'll do our best to show you more relevant ads in the future. Help us show you better ads by opting out your ads settings.

Scientists from the National Renewable Energy Laboratory (NREL) have come up with a black silicon technology, seeking to make solar power more competitive with other types of energy over the next decade.

New Jersey-based Natcore will benefit from their findings, exploring the new path to launch a new generation of products, cheaper and much more advanced.

The silicon wafer licensed recently could count as a game-changer on the market of solar-powered appliances, since experts talk about potential improvements posed by infra-red imaging systems and night-vision.

According to its developers, the material displays a sensitivity to light up to 500 times bigger than its predecessor, the common, widely-used silicon detectors.

Financial benefits are also expected, since cell processing costs could decrease by 8%, due to the ingenious invention.

The collaboration between NREL and Natcore aims to make the black silicon technology even more affordable while boosting a new generation of solar cells more energy-efficient, harnessing optimal amounts of sunlight throughout the entire day.
2 layer ARC see http://pveducation.org/pvcdrom/design/dlarc
\[T_{\text{inc}} = \text{transmission from air to PMMA}. \]

\[\gamma = \text{absorption factor at rear surface of PMMA (including transmission into silicon)} \]

Reflected light = \(T_{\text{inc}} (1 - \gamma) \)
We can also calculate absorption at each reflection event & add these up. Silicon is assumed to absorb everything.

First absorption = $\eta \text{Time} (1 - \eta)$

2nd absorption = $\eta \text{Time} (1 - \eta^2)$

Reflected fraction is $\eta^2 \text{Time} \left(1 - \frac{\eta}{2n^2}\right)$
The natural text representation of the image is:

\[p^{th} \text{ absorption} = \gamma \text{ Time} \left(1 - \eta \right)^p \left(1 - \frac{T_{100}}{2n^2} \right)^p \]

Total absorption =

\[\gamma \text{ Time} \left\{ 1 + (1 - \eta) \left(1 - \frac{T_{100}}{2n^2} \right) + \right. \]

\[\left((1 - \eta)^2 \left(1 - \frac{T_{100}}{2n^2} \right)^2 + \ldots \right\} \]

\[= \gamma \frac{\text{Time}}{1 - (1 - \eta) \left(1 - \frac{T_{100}}{2n^2} \right)} \]
For $n_{PMMA} = 1.5$ & $n_{Si} = 3.5$ \rightarrow

$$\eta = \left(1 - \frac{n_{Si} - n_{PMMA}}{n_{Si} + n_{PMMA}}\right)^2 = 1 - \left(\frac{3.5 - 1.5}{3.5 + 1.5}\right)^2 = 0.84$$

$$T_{inc} = 1 - \left(\frac{n_{PMMA} - 1}{n_{PMMA} + 1}\right)^2 = 1 - \left(\frac{1.5 - 1}{1.5 + 1}\right)^2 = 0.96$$

We can approximate $T_{exc} \approx T_{inc}$

$$\text{Absorption} = \frac{T_{inc} \eta}{1 - (1-\eta)(1-\frac{T_{exc}}{2n^2})} = 0.923$$
~90% of light gets absorbed in Silicon & the PMMA/Si interface. So ~10% of light is reflected back. So, PMMA on top of randomly textured silicon acts as a decent ARC.

Note that if no PMMA or texturing was present, the reflectivity of a polished silicon wafer would be

\[
\left(\frac{n_{Si} - 1}{n_{Si} + 1} \right)^2 = 31\%
\]
Case of simple index matching. Design an ARC for polished Si.

\[
\text{air (n = 1)}
\]

\[
\underline{\text{ARC (n)}}
\]

\[
\text{Si (n = 3.5)}
\]

What is the total loss by reflection of the ARC?
\[n = \frac{(1 + 3.5)}{2} = 2.25 \]

\[\text{Reflection}_1 = \left(\frac{2.25 - 1}{2.25 + 1} \right)^2 = 0.15 \]

\[\text{Reflection}_2 = \left(\frac{8.5 - 2.25}{3.5 + 2.25} \right)^2 = 0.074 \]

\[\text{Total reflection} \approx 0.15 + 0.07 \approx 0.22 \]
So, the PMMA + texturing proves to be an effective ARC due to effective light-trapping. Reflectivity ~ 10%. Note that all solar cells are encapsulated in glass for protection from the elements. So, there is always a reflectivity of ~4% off the top (n ~ 1.5). So reducing this to 11% is pretty good since ~4% is the best one can hope to achieve.