Solar Radiation: The basics

- Sunlight is the source of all of Earth's energy.
- Heat & Food.
- Fossil fuels are stored solar energy from millions of years ago.
- Biomass converts solar energy to fuel.
- Wind energy is the result of solar heated air & earth's rotation.
- Even hydro-power is generated by the sun since evaporated water returns to earth as rain & fills the dams.
Basic properties of light

THE ELECTRO MAGNETIC SPECTRUM

Wavelength (metres)

Radio: 10^3
Microwave: 10^{-2}
Infrared: 10^{-5}
Visible: 10^{-6}
Ultraviolet: 10^{-8}
X-Ray: 10^{-10}
Gamma Ray: 10^{-12}

Frequency (Hz)

10^4
10^8
10^{12}
10^{15}
10^{16}
10^{18}
10^{20}
Basic properties of light

Light exists as a wave -> wavelength & frequency.
Light also is a particle -> momentum & energy.

\[E = h \nu = hc/\lambda \]

Characteristics of light that are relevant to energy

- Spectral content of incident light
- Radiant power density of sunlight
- Angle at which the incident sunlight strikes absorber
- Radiant energy from sun throughout year
Basic properties of light

Energy of a photon

\[E = h\nu = \frac{hc}{\lambda} \]

\(h = \text{Planck's constant} = 6.626 \times 10^{-34} \text{Js} \)

We also express energy in electron-volts (eV). 1eV is the energy required to raise an electron through 1Volt potential.

1 eV = 1.602 \times 10^{-19} \text{J}

What is the energy of a green photon (wavelength = 500nm)?

What is the energy of an infra-red photon (wavelength = 1micrometer)?

Photon Flux

Photon flux is defined as the number of photons per second per per unit area. This determines the number of electrons generated in a solar cell, for instance.

\[\Phi = \text{# of photons / (time X area)} \quad [\text{s}^{-1}\text{m}^{-2}] \]
Basic properties of light

But photon flux doesn’t give any information on photon energy. So power density is calculated by multiplying photon flux by the energy of a single photon.

\[H \ (W/m^2) = \Phi \times \frac{hc}{\lambda} \] Note that this is wavelength dependent.

If a red beam has the same power density as a blue beam, which beam has higher photon flux?

If both beams are incident on a solar cell, which will produce higher current?
Which will produce more electric power?
Basic properties of light

Spectral Irradiance = power density as a function of wavelength

This is the most common way to characterize a light source.

\[F = \frac{H}{\lambda} = \phi \frac{hc}{\lambda^2} \]
Radiant Power Density

The total power density emitted from a light source can be calculated by integrating the spectral irradiance over all wavelengths of interest.

\[H = \int_{0}^{\infty} F(\lambda) \, d\lambda \]

What are the units of \(H \) ?

Needs to be done numerically.

\[\Delta \lambda = \frac{\lambda_{i+1} + \lambda_{i}}{2} - \frac{\lambda_{i} + \lambda_{i-1}}{2} = \frac{\lambda_{i+1} - \lambda_{i-1}}{2} \]

\[H_i = \Delta \lambda \cdot F(\lambda_i) \]
Blackbody Radiation

Light sources such as the sun, incandescent lamps, etc. are modeled as blackbody emitters. An ideal blackbody absorbs all radiation incident on its surface & emits based upon its temperature.

The spectral irradiance is governed by Planck's radiation law:

\[F(\lambda) = \frac{2\pi hc^2}{\lambda^5} \left\{ \frac{1}{\exp \left(\frac{hc}{\lambda kT} \right) - 1} \right\} \]

\(T \) = temperature of blackbody (K)

The total power density is then given by:

\[H = \int_{0}^{\infty} F(\lambda) d\lambda \]

\[H = \sigma T^4 \quad \text{Stefan-Boltzmann Law} \]

\[\sigma = 5.67 \times 10^{-8} \ J \text{s}^{-1} \text{m}^{-2} \text{K}^{-4} \quad \text{Stefan-Boltzmann Constant} \]
Blackbody Radiation

Another important parameter is the wavelength where spectral irradiance is maximum.

\[F(\lambda) = \frac{2\pi hc^2}{\lambda^5} \left\{ \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right)} - 1 \right\} \]

\[\frac{\partial F}{\partial \lambda} = 0 \]

\[\lambda_{peak}(\mu m) = \frac{2900}{T(K)} \]

Wein's law.

So the temperature of the blackbody affects both the spectral distribution as well as the total power density emitted.

Which star is hotter?

Orion Constellation
The Sun

The sun is a hot sphere, whose internal temperatures reach over 20 Million K due to nuclear reactions in its core, which convert H2 to He.

Inner core: H2 -> He (20MK)
Radiation from inner core absorbed by H ions closer to surface.
Sun’s surface (photosphere) temperature is about 6000K.

What is the peak wavelength of radiation?
Solar spectral irradiance resembles blackbody at ~6000K. Total power emitted by the sun = power-density X surface area of sun ~ 9.5×10^{25} W.
Solar Radiation in Space

Solar irradiance on an object some distance D from the sun is found by dividing the total power emitted from the sun by the surface area over which the light falls.

\[
H_0 = (\sigma T^4) \times \frac{4\pi R_{sun}^2}{4\pi D^2} = (\sigma T^4) \frac{R_{sun}^2}{D^2}
\]

<table>
<thead>
<tr>
<th>Distance</th>
<th>Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus 108 X 10^9 m</td>
<td>2611 W/m²</td>
</tr>
<tr>
<td>Earth 150 X 10^9 m</td>
<td>1366.1 W/m²</td>
</tr>
<tr>
<td>Pluto 5806 X 10^9 m</td>
<td>0.878 W/m²</td>
</tr>
</tbody>
</table>

The actual power density changes as earth moves in its elliptical orbit & the sun’s emitted power is not constant. Earth is closest to sun in January & farthest away in July.

\[
\frac{H}{H_{constant}} = 1 + 0.033\cos\left(\frac{360(n - 2)}{365}\right)
\]

\[H_{constant} = \text{solar constant} \sim 1353 \text{ W/m}^2\]

\[n = \text{day of year}\]
Standard Solar Spectra

These variations are small for most energy applications. Hence, standard spectra are used.
Solar radiation at earth's surface

While the solar radiation incident on earth's atmosphere is fairly constant, the radiation at the earth’s surface varies widely due to:

- atmospheric effects including absorption & scattering.
- local variations in the atmosphere such as water vapor, clouds & pollution
- Latitude of location
- Season of year & time of day.

Parameters that change are: spectral irradiance, power density, angle of incidence.

Atmospheric Effects

- Reduction in power due to scattering, absorption & reflection.
- Change in spectral content due to greater absorption & scattering at certain wavelengths.
- Introduction of diffuse or indirect component to solar radiation.
- Local variations in atmosphere, which affect total power & spectral content.
Atmospheric Effects

- High absorption at wavelengths where photon energies are close to the bond energies of specific gases - Ozone, CO2, water vapor.
- Most of far-IR (>2micron) is absorbed by H2O & CO2.
- Most of UV (< 300nm) is absorbed by Ozone [But not enough to prevent sunburn!]
- These cause deep troughs in spectrum.
- Dust & air molecules absorb across spectrum & reduce overall power. When sun is overhead, all wavelengths are uniformly absorbed & sun looks white. During morning & evening, the optical paths are longer & shorter wavelengths are more effectively absorbed & scattered. This gives rise to a reddish color & lower power density.
Atmospheric Effects

Direct vs Diffuse sunlight

Rayleigh Scattering -> shorter wavelengths are scattered much more than longer ones. Hence, sky looks blue. About 7-10% is diffuse on a clear day.

Question: Is the fraction of high-energy photons higher in diffuse or in direct sunlight?

Power density in AM1.5 is about 28% less than in AM0. AM0 is used to characterize solar cells in space.

Effect of clouds
Atmospheric Effects

Air-mass

Air mass is the path length which light takes through the atmosphere normalized to the shortest path possible (i.e., when the sun is overhead). It quantifies the reduction in power as light passes through air.

What is the air mass at sunrise?

\[AM = \frac{1}{\cos \theta} \]

If we take the curvature of the earth into account, a more accurate formula can be derived.

\[AM = \frac{1}{\cos \theta + 0.50572(96.07995 - \theta)^{-1.6364}} \]

Direct component on a plane perpendicular to sun's rays:

\[I_d = 1.353 \times 0.7^{AM^{0.678}} \]

Intensity increases with height above sea level. So Utah & the desert southwest has higher solar power densities.

\[I_d = 1.353 \times (1 - 3.14h)^{0.7^{AM^{0.678}}} + 3.14h \]

\(h = \) height above sea level (km)

Even on clear (cloudless) days, the diffuse component in 10% of the direct portion.
List of potential projects

1. Solar water desalination / pasteurization systems

2. Optical classification & sorting of recycled goods

3. Concentrators & other optics for hybrid photovoltaics/hot-water systems

4. Solar refrigeration, ice making & cooling systems

5. Solar daylighting systems.

Write your name, email address, top 3 project choices (in order of preference).
Water

A simple example here:

Can you make a simple, cheap, portable, water desalination/pasteurization system?
Water

A simple example here:

Can you make a simple, cheap, portable, water desalination/pasteurization system?
Optical Sorting

Now, can we change this paradigm fundamentally with this?
Now, can we change this paradigm fundamentally with this?
Hybrid photovoltaics & heating

Can you design a system that is inexpensive, portable & has high efficiency.
Hybrid photovoltaics & heating

Can you design a system that is inexpensive, portable & has high efficiency.
Solar refrigeration & cooling

Can you design a simple, portable, cheap refrigeration/cooling system?
Solar refrigeration & cooling

Can you design a simple, portable, cheap refrigeration/cooling system?
Solar Daylighting

Commercial solutions exist:

Can you make this more modular (integrated with HVAC) or use fibers, etc.
Solar Daylighting

Commercial solutions exist:

Can you make this more modular (integrated with HVAC) or use fibers, etc.
List of potential projects

1. Solar water desalination / pasteurization systems

2. Optical classification & sorting of recycled goods

3. Concentrators & other optics for hybrid photovoltaics/hot-water systems

4. Solar refrigeration, ice making & cooling systems

5. Solar daylighting systems.

Write your name, email address, top 3 project choices (in order of preference).