Solar Radiation: The basics

- Sunlight is the source of all of Earth's energy.
- Heat & Food.
- Fossil fuels are stored solar energy from millions of years ago.
- Biomass converts solar energy to fuel.
- Wind energy is the result of solar heated air & earth's rotation.
- Even hydro-power is generated by the sun since evaporated water returns to earth as rain & fills the dams.
Basic properties of light
Basic properties of light

Light exists as a wave -> wavelength & frequency. Light also is a particle -> momentum & energy.

\[E = h\nu = hc/\lambda \]

Characteristics of light that are relevant to energy

- Spectral content of incident light
- Radiant power density of sunlight
- Angle at which the incident sunlight strikes absorber
- Radiant energy from sun throughout year
Basic properties of light

Energy of a photon

\[E = h \nu = h c / \lambda \]

\(h = \text{Planck's constant} = 6.626 \times 10^{-34} \text{ Js} \)

We also express energy in electron-volts (eV). 1eV is the energy required to raise an electron through 1Volt potential.

\(1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \)

Photon Flux

Photon flux is defined as the number of photons per second per unit area. This determines the number of electrons generated in a solar cell, for instance.

\[\Phi = \text{# of photons} / (\text{time} \times \text{area}) \quad [s^{-1} \text{ m}^{-2}] \]
Basic properties of light

But photon flux doesn’t give any information on photon energy. So power density is calculated by multiplying photon flux by the energy of a single photon.

\[H \ (W/m^2) = \Phi \times \frac{hc}{\lambda} \]

Note that this is wavelength dependent.

If a red beam has the same power density as a blue beam, which beam has higher photon flux?
Basic properties of light

Spectral Irradiance

= power density as a function of wavelength

This is the most common way to characterize a light source.
Radiant Power Density

The total power density emitted from a light source can be calculated by integrating the spectral irradiance over all wavelengths of interest.

$$H = \int_{0}^{\infty} F(\lambda) d\lambda$$

What are the units of H?
Blackbody Radiation

Light sources such as the sun, incandescent lamps, etc. are modeled as blackbody emitters. An ideal blackbody absorbs all radiation incident on its surface & emits based upon its temperature.

The spectral irradiance is governed by Planck’s radiation law:

\[F(\lambda) = \frac{2\pi hc^2}{\lambda^5} \left\{ \frac{1}{\exp \left(\frac{hc}{\lambda kT} \right) - 1} \right\} \]

T = temperature of blackbody (K)

The total power density is then given by:

\[H = \int_0^\infty F(\lambda) d\lambda \]

\[H = \sigma T^4 \]

Stefan-Boltzmann Law

\[\sigma = 5.67 \times 10^{-8} \text{ Js}^{-1} \text{m}^{-2} \text{K}^{-4} \]

Stefan-Boltzmann Constant
Blackbody Radiation

Another important parameter is the wavelength where spectral irradiance is maximum.

\[
F(\lambda) = \frac{2\pi hc^2}{\lambda^5} \left\{ \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right)} - 1 \right\}
\]

\[
\frac{\partial F}{\partial \lambda} = 0
\]

\[
\lambda_{\text{peak}} (\mu m) = \frac{2900}{T (K)}
\]

Wein's law.

So the temperature of the blackbody affects both the spectral distribution as well as the total power density emitted.

Which star is hotter?

Orion Constellation
The Sun

The sun is a hot sphere, whose internal temperatures reach over 20 Million K due to nuclear reactions in its core, which convert H2 to He.

Inner core: H2 -> He (20MK)
Radiation from inner core absorbed by H ions closer to surface.
Sun’s surface (photosphere) temperature is about 6000K.

Solar spectral irradiance resembles blackbody at ~6000K. Total power emitted by the sun = power-density \(\times \) surface area of sun \(\approx 9.5 \times 10^{25} \text{ W} \).
Solar Radiation in Space

Solar irradiance on an object some distance D from the sun is found by dividing the total power emitted from the sun by the surface area over which the light falls.

$$H_0 = (\sigma T^4) \times \frac{4\pi R_{sun}^2}{4\pi D^2} = (\sigma T^4) \frac{R_{sun}^2}{D^2}$$

<table>
<thead>
<tr>
<th>Object</th>
<th>Distance</th>
<th>Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus</td>
<td>108 \times 10^9 m</td>
<td>2611 W/m2</td>
</tr>
<tr>
<td>Earth</td>
<td>150 \times 10^9 m</td>
<td>1366.1 W/m2</td>
</tr>
<tr>
<td>Pluto</td>
<td>5806 \times 10^9 m</td>
<td>0.878 W/m2</td>
</tr>
</tbody>
</table>

The actual power density changes as earth moves in its elliptical orbit & the sun’s emitted power is not constant. Earth is closest to sun in January & farthest away in July.

$$\frac{H}{H_{constant}} = 1 + 0.033\cos\left(\frac{360(n-2)}{365}\right)$$

$H_{constant} = \text{solar constant} \approx 1353$ W/m2

$n = \text{day of year}$
Standard Solar Spectra

These variations are small for most energy applications. Hence, standard spectra are used.
Solar radiation at earth's surface

While the solar radiation incident on earth's atmosphere is fairly constant, the radiation at the earth's surface varies widely due to:

- atmospheric effects including absorption & scattering.
- local variations in the atmosphere such as water vapor, clouds & pollution
- Latitude of location
- Season of year & time of day.

Parameters that change are: spectral irradiance, power density, angle of incidence.

Atmospheric Effects

- Reduction in power due to scattering, absorption & reflection.
- Change in spectral content due to greater absorption & scattering at certain wavelengths.
- Introduction of diffuse or indirect component to solar radiation.
- Local variations in atmosphere, which affect total power & spectral content.
Atmospheric Effects

- High absorption at wavelengths where photon energies are close to the bond energies of specific gases - Ozone, CO2, water vapor.
- Most of far-IR (>2micron) is absorbed by H2O & CO2.
- Most of UV (<300nm) is absorbed by Ozone [But not enough to prevent sunburn!]
- These cause deep troughs in spectrum.
- Dust & air molecules absorb across spectrum & reduce overall power. When sun is overhead, all wavelengths are uniformly absorbed & sun looks white. During morning & evening, the optical paths are longer & shorter wavelengths are more effectively absorbed & scattered. This gives rise to a reddish color & lower power density.
Atmospheric Effects

Direct vs Diffuse sunlight

Rayleigh Scattering -> shorter wavelengths are scattered much more than longer ones. Hence, sky looks blue. About 7-10% is diffuse on a clear day.

Power density in AM1.5 is about 28% less than in AM0. Am0 is used to characterize solar cells in space.
Atmospheric Effects

Air-mass

Air mass is the path length which light takes through the atmosphere normalized to the shortest path possible (i.e., when the sun is overhead). It quantifies the reduction in power as light passes through air.

\[AM = \frac{1}{\cos \theta} \]

If we take the curvature of the earth into account, a more accurate formula can be derived.

\[AM = \frac{1}{\cos \theta + 0.50572(96.07995 - \theta)^{-1.6364}} \]

Direct component on a plane perpendicular to sun’s rays:

\[I_d = 1.353 \times 0.7^{AM^{0.678}} \]

Intensity increases with height above sea level. So Utah & the desert southwest has higher solar power densities.

\[I_d = 1.353 \times (1 - 3.14h)^{0.7^{AM^{0.678}}} + 3.14h \]

\(h = \) height above sea level (km)

Even on clear (cloudless) days, the diffuse component in 10% of the direct portion.